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I. Introdution. In a recent paper [1] Bramble and Hubbard formulated finite 
difference analogues of the Dirichlet problem for Poisson's equation in the plane 
which were O(h4), h being the mesh width. Subsequently in [2] they gave a general 
theorem on error estimation for a class of finite difference analogues to the Dirichlet 
problem for some general uniformly elliptic equations in N-dimensions. Some ex- 
amples in the plane are formulated there. 

In dealing with Poisson's equation by finite difference methods a very large 
system of linear equations must be solved. Even with modern high-speed computers 
this number may be prohibitively large if the desired accuracy is to be obtained. 
Several methods commonly used in plane problems are 0(h2) and their direct 
analogues in higher dimensions can also be shown to be 0(h2). Thus, if (for smooth 
problems) in three dimensions a fourth-order method were used instead of a second- 
order one, it might be expected that a considerably smaller system would yield 
comparable accuracy. Consequently, if a higher order method were used some prob- 
lems might move to within the range of practical feasibility. 

In this paper analogues to the Dirichlet problem for Poisson's equation in three 
and four dimensions are given. These analogues are shown to be 0(h4) as h -* 0. 

2. Three Dimensional Case. Let R be a bounded region with boundary C in 
three dimensions. In the usual manner the space is subdivided into cubes of side h 
with faces parallel to the (x, y), (x, z), and (y, z) planes. The corner points of these 
cubes will be called mesh points. The set Rh will consist of those mesh points P in R 
whose 18 nearest neighboring mesh points, and the lines joining them to P, are in R. 
The set Ch** will denote those mesh points P E R - Rh whose 6 nearest neighbors 
and the lines joining them to P are in R. The set of mesh points in R - Rh - Ch** 

will be called C*. If P is in Ch* then at least one line joining P to one of its 6 nearest 
neighbors say (x - h, y, z) is cut by C. Thus for some a, 0 < a < 1, 
(x - ah, y, z) is on C. Such a point will be said to lie in Ch. Similarly, one of the 
neighbors of (x, y, z) in the y and z directions may not be in R. These points will 
also then lie in Ch. The totality of such "neighbors" of points of Ch* will make up 
the set Ch. The mesh size is assumed so small that if (x, y, z) is in Ch* and 
(x ?- ah, y, z) is in Ch then (x ? h, y, z) and (x ? 2h, y, z) are in R + C where 
either the plus sign is taken at each of the points or the minus sign is taken. 
Analogous statements are assumed for the y and z directions. 

With the preceding sets defined we are in a position to formulate the finite 
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difference problem. The exact problem to be approximated is 

Au= F in R 

(2.1) u=f on C, 

where A is the Laplace operator, + + a and F andf are sufficiently smooth 

functions defined in R and on C respectively. 
At a point (x, y, z) of Rh we approximate Au by 

Ah U(X, Y Z) = {2[u(x + h, y, z) + u(x-h, y, z) + u(x, y + h, z) 
6h2 

+u(x,y-h,z) +u(x,y,z+h) +u(x,y,z-h)]+u(x+h,y+h,z) 

+ u(x + h, y - h, z) + u(x - h, y + h, z) + u(x - h, y - h, z) 

(2.2) + u(x + h, y, z + h) + u(x + h, y, z-h) + u(x-h, y, z + h) 

+ u(x - h, y, z - h) + u(x, y + h, z + h) + u(x, y + h, z - h) 

+ u(x, y-h, z + h) + u(x, y-h, z-h) -24u(x, y, z)J. 

aOu a9u 
By approximating + d2 by means of 

h(ZY) u -[u(x + h, y, z) + u(x-h, y, z) 

+ u(x, y + h, z) + u(x, y - h, z) - 4u(x, y)] 

and 

Ax~zv) [u(x + h, y + h, z) + u(x + h, y - h, z) 

+ u(x - h,y + h,z) + u(x - h,y - h,z) - 4u(x,y)] 

with similar considerations in the (x, z) and (y, z) planes it is easy to see that AhU 

given by (2.2) is just 

AhU = 2{Ah(x,y)U + Ah(x,z)U + Ah(y,z)U}, 

where 
Ah(x,y)U = 3 h(Ay)U + 3Ah(sy)U 

From this structure it is not difficult to see that 

(2.3) Ah - (Au + hA2UA h4, 

where M1I is a uniform bound for any ith partial derivative of u in R + C. 
At a point of Ch** we define 

Ah**U = - [u(x,+ h, y, z) + u(x - h, y, z) + u(x, y + h, z) 
(2.4) h 

+ u(x, y - h, z) + u(x, y, z + h) + u(x, y, z - h) - 6u(x, y, z). 
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The inequality 

(2.5) Ah ** - Au I _ 1 4 h2 

holds at points of Ch*. 
At a point of Ch* the pure second partial derivatives are approximated to 

O(h2),if necessary by an unbalanced four-point formula which includes a point of 
Ch. (See [1]). For example, if (x, y, z) is in Ch* and (x - ah, y, z) E Ch then we 
have that 

uX(x, V, )-h +2 2)a u(x + 2h, Y, Z) + 
2 (2 a) u(x + h, y, z) 

(2.6) 6 ( 
h3) a- 

yz) <!2 
h2 

+ (- )(+2 u(x -ah, zy, Z) -3 ?u(x, Y) Z)| 6h2 + 6h3. 

If the neighbors of (x, y, z) in the y and z direction are in R then we define on Ch* 

*h 
I a I 

u(x + 2h, y( z) + 
2(2 -a) 

u(x + h y ) h 2 aK+ 2U(+ha~) a+1 uxhyz 

(2.7) + a - u(x - ah, y, z) + u(x, y + h, z) + u(x, y - h, z) 
a(ae + 1) (a + 2) 

+ u(x, y, z + h) + u(x, y, z - h) -3 a + 1 u(x Yz)} . 

It is easy to see that 

(2.8) IAh*u -Au!I< 24h2+ ML h3. 
2 2 

(See [1]). At each point of Ch*,Ah* is defined analogously, using the four-point ap- 
proximation when needed. 

As our approximating problem we consider the following linear system 

Ah U(P) = F(P) + - AF(P), P E Rh 6 

(2.9) Ah**U(P) = F(P), P E Ch 

Ah*U(P) = F(P), P E Ch* 

U(P) = f(P), P E Ch 

for the determination of U at the points of Rh + Ch* + Ch**. The system (2.9) is 
not of positive type (see e.g., Forsythe and Wasow [3]) however, it does have the 
properties of "interior positivity" and "strict diagonal dominance". (See [1]). 
As in the case of the plane [1] these conditions will suffice to show that if 

E(P) = u(P) - U(P) 

then, 

(2.10) I E(P) IM = 0(h4), 

where the subscript M denotes the maximum over all P E Rh + Ch* + Ch**. 
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The method of proof follows closely that given by Bramble and Hubbard in [1]. 
Let Gh(P, Q) be the "Green's function" defined by 

Ah,PGh(P, Q) = -h-35(P, Q), P E R, 

(2.11) A**Gh(P1 Q) = -h36(P, Q), P E Ch** 

Gh(P, Q) = 6(P, Q), P E Ch*, 

for each Q E Rh + Ch** + Ch*. By the usual means it may be shown that 
Gh(P, Q) _ 0. It may be easily verified that any mesh function V(P) defined for 
P C Rh + Ch** + Ch* satisfies the identity 

V(P) = h ? Gh(P, Q) [-AhV(Q) ] 

(2.12) QERh 

+h3 Z Gh(P, Q)[-Ah**V(Q)1+ E Gh(P, Q)V(Q). 
QE Ch* QE Ch* 

In particular, if we take 

V(P) = 1, P E Rh + C,&** 
and 

V(P) =0 for P ECh* 

then we obtain 

(2.13) 1 ? h E Gh(P, Q). 
QE Ch** 

Because of the interior positivity of (2.9) it can be seen that if 

AhW(P) > 0, P E Rh 

(2.14) Ah,&W(P) > 0, P X Ch** 

then 

W(Q) ? max W(P), Q C Rh + Ch** + Ch*- 
PE Oh* 

This is just an interior maximum principle. By making use of (2.14) it can be 
readily shown as was done in [1] that 

(2.15) h3 E G,,(P, Q) <-, 
QERh 24' 

where d is the diameter of R. 
Let us now apply (2.12) to e(P). Making use of the (2.13) and (2.15) and the 

fact that G, (P, Q) > 0 we have that 

d2 
i(2(P) < - [max |Ah E(Q)l 

(2.16) 24QEnh 

+ h2[ max I Ah e(Q) I] + Z Gi(P, Q) | E(Q) I. 
QE Ch** QECh* 

From (2.3), (2.5) and (2.9) it follows that 

(2.17) Ie(P) ? -24 6+ 4 h + E Gh(P, Q) I EQ)( . 
L4 Q~ 
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Now if we use the definition of Ah* ((2.7) or the appropriate analogue of (2.7)) 
and the fact that e(P) = 0, P E Ch we find that 

(2.18) 1 e(P) I < - I eI M + -I Ah*E(P) | P E Ch*. 

But, from (2.9) and (2.8) 

(2.19) IAh*e(P) = IA*U(P) -Au(P) I < 4 ?h2 5 h - 2 ~ 2 

Hence, combining (2.18) and (2.19), we have 

(2.20) 1e(P) I < 5 1 I m + + Mh) h4, P G Ch* 

Now, since EQEc,* Gh(P, Q) _ 1, we have from (2.17) and (2.20) 

Fd2 h 5 
(2.21) Ie(P) I < -I M6+ hM5 + M M4 h + If 1eM. 

Since the right hand side of (2.21) is independent of P we conclude that 

(2.22) 1eM 40 [ + h M + 2M4 h 

This shows that the overall error produced in replacing problem (2.1) by (2.9) is 
0(h4). 

3. Higher Dimensional Problems. Let us assume that the sets Rh, Ch**, Ch*, 

and Ch have been defined in a manner analogous to that of the preceding section. 
In formulating O(h4) analogues to (2.1) in N dimensions we could use the direct 

analogues of (2.4) and (2.7). The problem reduces to that of finding the analogue 
of (2.2) at a point (xi, ., XN) E Rh . 

Let us proceed as described after (2.2) and consider various two dimensional 
planes through P and the Laplace difference operators in these respective planes. 
It turns out that if we define 

(3.1) h U = 
1 1 i:N 4 - N + N - 1 x l 

(3.1 ) N - 1 {i=l, N-1 [ 3 3hZj + ttX ] 
j=2,**, 
j>i 

then the relation 

(3.2) Ah ( U+N 6 h22) O(h4) 

is valid in Rh . In order that (3.1) be of positive type (see, e.g., [3]) it is necessary 
that N ? 4. For N = 2, (3.1) is the usual nine-point formula in the plane and for 
N = 3, (3.1) reduces to (2.2) of Section II. The case N = 4 is interesting in that 

(3.3) hU3 {Z Ahxii)u}, 
j=2, * * ,4 
j>i 
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and the term involving Ah+(X X,) drops out. Thus, in three dimensions (2.2) is a 19- 
point formula while in four dimensions (3.3) is a 25-point formula, both being 
0(h4) expressions. 

For N > 4, although (3.3) is O(h4) locally, it is not of positive type. Thus, the 
method of Section III is not applicable and it is not clear that an overall 0(h4) 
estimate for the truncation error e(P) would result. It seems that a different ap- 
proach might be more desirable for N > 4. 

It should be noted that if, at points of Ch*, the direct analogue of the Shortley 
and Weller approximation [4] is used, then an overall O(h3) estimate for the trunca- 
tion error could be obtained in two, three or four dimensions. 
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